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研究目的 

ほ乳類のダイナミンは、分子量約 100kDa の GTPase であり、細胞膜やアクチン線維上で重

合し、自身の GTPase 活性と共役してダイナミックに構造を変化し、細胞膜やアクチン線維を

「曲げ」「絞り」「切り」「束ねる」、いわゆるメカノエンザイムとして働くことが知られている。ダイ

ナミンの変異は、シャルコー・マリ一・トゥース（CMT)病を含む一部の遺伝性疾患の原因となっ

ている。本共同研究は、腎臓糸球体ポドサイトに発現しているダイナミン１及びダイナミン２の

細胞内機能を調べることを目的とした。本年度は、論文投稿後、追加実験に注力した。 

 

研究成果 

①ダイナミン１は、直接微小管を束ねる。 

腎糸球体ポドサイトに発現するダイナミン 1が、微小管の配向と安定性に関与するこ

とを発見した。今年度は、主に in vitroの系を用いてダイナミン１による微小管の形

態変化を負染色と透過型電子顕微鏡を用いて調べた。in vitroの実験では、ヒトダイ

ナミン１、ラットダイナミン２、ラットダイナミン２CMT変異体をコムギ胚芽無細胞

タンパク発現系にて発現、精製した。 

 

精製したダイナミン１タンパクと、試験管内

で調製した微小管を混合し、微小管の形態を負

染色と電子顕微鏡で組み合わせて観察した。ダ

イナミン１は、微小管上で規則的に重合しダイ

ナミン１が結合した微小管同士が束となった。

この結果から、ダイナミン１は、直接微小管を

束ねる能力があることが判明した（左図下）。 

 

 

 

 

 

②ダイナミン１によって束化した微小管は脱重合速度が減少する。 

ダイナミン１によって束化された微小管が安定化するのか否かを、ダイナミン１の存

在または非存在下で、チューブリン脱重合促進剤（カルシウムイオン、

podophyllotoxin）による脱重合キネティクスを計測することで検討した。微小管の分

解速度は、Microtubule depolymerization assay kit (Cytoskeleton社）を用いて蛍

 
図. コムギ胚芽無細胞タンパク発現系を用いて発現、

精製したダイナミン１は微小管に結合し、束化に関わ

る。微小管のみ（上）、微小管＋ダイナミン１（下）

の電顕像。 



光プレートリーダーにて測定した。精製したダイナミン１は、２つの脱重合促進剤に

よるチューブリンの脱重合を、濃度依存的に抑制した。 

 

昨年までの結果を合わせ、ダイナミン１が、微小管を束ねることで微小管を安定化さ

せ、ポドサイトの形態、機能維持に働いていることが明らかになった。本研究は、米

国実験生物学連合会の学会誌である FASEB Journalの 2020年 12月号に掲載され、さ

らに本論文が 12月号表紙に採択された。 

 

成果発表 

著者：The Mon La, Hiromi Tachibana, Shun-Ai Li, Tadashi Abe, Sayaka Seiriki, Hikaru 
Nagaoka, Eizo Takashima, Tetsuya Takeda, Daisuke Ogawa, Shin-Ichi Makino, Katsuhiko 
Asanuma, Masami Watanabe, Xuefei Tian, Shuta Ishibe, Ayuko Sakane, Takuya Sasaki, Jun 
Wada, Kohji Takei, Hiroshi Yamada 
題：Dynamin 1 is important for microtubule organization and stabilization in glomerular 
podocyte  
掲載誌：The FASEB Journal, 34, 16449-16463, 2020 
 

今後の課題 

本研究では、ポドサイトの細胞機能を含め、ダイナミン１及び２の細胞骨格制御機構

の解析を行っている。まずは、ダイナミンによる微小管制御機構の一端を明らかにす

ることができた。本研究と並行して高島博士との共同研究であるダイナミン２による

アクチン制御機構の解析も進んでいる。ダイナミン２ーアクチン線維の構造も明らか

にされつつある。今後、議論を進めつつ、さらに研究を遂行する予定である。 



Dynamin 1 is important for microtubule organization and 
stabilization in glomerular podocytes. 
See page 16449.
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Abstract
Dynamin 1 is a neuronal endocytic protein that participates in vesicle formation by 
scission of invaginated membranes. Dynamin 1 is also expressed in the kidney; how-
ever, its physiological significance to this organ remains unknown. Here, we show 
that dynamin 1 is crucial for microtubule organization and stabilization in glomeru-
lar podocytes. By immunofluorescence and immunoelectron microscopy, dynamin 
1 was concentrated at microtubules at primary processes in rat podocytes. By im-
munofluorescence of differentiated mouse podocytes (MPCs), dynamin 1 was often 
colocalized with microtubule bundles, which radially arranged toward periphery 
of expanded podocyte. In dynamin 1-depleted MPCs by RNAi, α-tubulin showed 
a dispersed linear filament-like localization, and microtubule bundles were rarely 
observed. Furthermore, dynamin 1 depletion resulted in the formation of discon-
tinuous, short acetylated α-tubulin fragments, and the decrease of microtubule-rich 
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1 |  INTRODUCTION

Glomerular podocytes are highly differentiated epithelial 
cells that line the urinary side of the glomerular basement 
membrane and participate in filtration. Podocytes have a 
complex architecture comprised of major primary processes 
that branch to form secondary and tertiary foot processes that 
interdigitate with those of neighboring podocytes to form and 
maintain the glomerular slit diaphragms.1 Hence, podocytes 
are supported by a network of abundant cytoskeleton com-
ponents, including microtubules, intermediate filaments, and 
actin filaments. Although the primary foot processes of podo-
cytes are enriched with microtubules,2 actin filaments are the 
major components.3 Proper regulation of these cytoskeletal 
components is crucial to maintain podocyte morphology and 
function.

Three isoforms of dynamin exist in mammals.4 Dynamin 
1 is expressed mainly in the brain, whereas dynamin 2 is 
expressed ubiquitously, and dynamin 3 is localized to the 
brain, lung and testis.5 Dynamins 1-3 contain an N-terminal 
GTPase, a bundle signaling element, a stalk domain, a phos-
phoinositide-binding pleckstrin homology domain, and a 
C-terminal proline and arginine-rich domain.6,7 The latter do-
main interacts with proteins that contain the Src-homology-3 
domain. All dynamins function in endocytosis by participat-
ing in membrane fission8 and are also involved in regulation 
of the cytoskeleton. Dynamin interacts directly and indirectly 
with actin to regulate its dynamics9 in lamellipodia and 
dorsal membrane ruffles,10,11 invadopodia,12 podosomes,13 
growth cones,14-16 and phagocytic cups.17,18 Furthermore, 
dynamin 1 binds directly to microtubules, and this binding 
stimulates its GTPase activity.19,20 A Charcot-Marie-Tooth 
disease-related mutation in dynamin 2 (555Δ3) is implicated 
in the dynamic instability of microtubules21,22; however, the 
physiological role of dynamin in microtubule regulation re-
mains to be elucidated.

Recently, dynamin has been implicated in maintaining 
the integrity and structure of the glomerular filtration bar-
rier. Podocyte-specific double knockout of dynamins 1 and 

2 in mice results in severe proteinuria and renal failure.23 In 
addition, a reduction in cellular dynamin levels via induc-
tion of cathepsin L expression causes proteinuria in mice.24 
Dynamin has been implicated in the turnover of nephrin 
on the surface of podocyte foot process via endocytosis,23 
as well as in maintenance of the structure of foot processes 
via direct and indirect interactions with actin filaments.25 
Furthermore, enhancement of dynamin oligomerization by 
Bis-T-23 increases stress fiber and focal adhesion formation 
in podocytes, resulting in a reduction in the level of protein-
uria in several animal models.26

Dynamins 1-3 are translated from three separate genes but 
have similar domains and functions. In podocytes, dynamin 
1 is thought to have a similar function to that of dynamin 2. 
However, a recent study by Khalil and colleagues27 revealed 
that the expression patterns of dynamins 1 and 2 differ prior 
to the onset of proteinuria, suggesting the distinct roles of 
these isoforms. Consequently, the role of dynamin 1 in podo-
cytes requires further clarification.

In this study, we investigated the function of dynamin 1 
in podocytes, and observed that it largely colocalizes with 
acetylated microtubule bundles in differentiated mouse podo-
cytes (MPCs). Depletion or overexpression of dynamin 1 in 
differentiated MPCs affected microtubule stabilization. In 
addition, an in vitro assay revealed tight microtubule bundle 
formation caused by direct binding of dynamin 1, resulting 
in enhanced microtubule stabilization. These results provide 
evidence suggesting that dynamin 1′s importance in microtu-
bule regulation.

2 |  MATERIALS AND METHODS

2.1 | Antibodies and reagents

Rabbit anti-Wilms tumor 1 (anti-WT1) antibody 
(cat#ab89901), rabbit monoclonal anti-dynamin 1 
(cat#ab52611) and Alexa Fluor 488-conjugated rat anti-tu-
bulin antibody (cat#ab195883) were purchased from Abcam 

protrusions. Dynamins 1 and 2 double-knockout podocytes showed dispersed acety-
lated α-tubulin and rare protrusions. In vitro, dynamin 1 polymerized around mi-
crotubules and cross-linked them into bundles, and increased their resistance to the 
disassembly-inducing reagents Ca2+ and podophyllotoxin. In addition, overexpres-
sion and depletion of dynamin 1 in MPCs increased and decreased the nocodazole re-
sistance of microtubules, respectively. These results suggest that dynamin 1 supports 
the microtubule bundle formation and participates in the stabilization of microtubules.

K E Y W O R D S

dynamin, microtubules, podocyte, primary process
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Plc (Cambridge, UK). The mouse monoclonal clathrin heavy 
chain antibody (clone X22, cat#MA1-065), mouse mono-
clonal anti-alpha-adaptin antibodies (cat#MA1-064), rab-
bit polyclonal antibodies against mouse IgG (cat#31450) 
and goat IgG (cat#31402), rabbit polyclonal anti-dynamin 
1 antibody (cat#PA1-660) and goat polyclonal antibody 
against rabbit IgG (cat#31460) were purchased from Thermo 
Fisher Scientific (Waltham, MA, USA). The mouse mono-
clonal antibodies against beta-actin (cat#A5441), alpha tu-
bulin (clone B-5-1-2, cat#T5168), acetylated tubulin (clone 
6-11B-1, cat#T6793), mouse anti-acetylated tubulin anti-
body (cat#T7451), and the Flag tag (cat#F1804) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). The 
goat polyclonal antibody against dynamin 2 (cat#sc-6400) 
was purchased from Santa Cruz Biotechnology (Santa Cruz, 
CA, USA). The mouse monoclonal antibody against syn-
aptopodin (clone G1D4, cat#65194) was purchased from 
PROGEN Biotechnik GmbH (Heidelberg, Germany). Alexa 
Fluor 488- (cat#A21206) or Alexa Fluor 555- (cat#A31572) 
conjugated donkey anti-rabbit IgG, Alexa Fluor 555- 
(cat#A31570) conjugated donkey anti-mouse IgG, Alexa 
Fluor 568- (cat#A11057) conjugated donkey anti-goat IgG, 
Alexa Fluor 488-conjugated goat anti-mouse IgG antibody 
(cat#A11001), Alexa Fluor 594-conjugated goat anti-rabbit 
IgG antibody (cat#A11037), and Alexa 488-labeled phal-
loidin (cat#A12379) were obtained from Thermo Fisher 
Scientific. Podophyllotoxin (cat#ab142606) was purchased 
from Abcam Biochemicals. Nocodazole (cat#M1404) was 
purchased from Sigma-Aldrich.

2.2 | Cell culture

The conditionally immortalized mouse podocyte cell line was 
cultured as described previously.28 Briefly, the cells were cul-
tured on type I collagen-coated plastic dishes (cat#356450; 
Corning Inc, NY, USA) in RPMI 1640 medium (cat#189-
02025; Fujifilm Wako Pure Chemicals Co. Ltd., Tokyo, 
Japan) containing 10% of fetal bovine serum (cat#10100147, 
Thermo Fisher Scientific), 100 U/mL penicillin, 100 µg/mL 
streptomycin (cat#15140122, Thermo Fisher Scientific), 
and 50 U/mL mouse recombinant γ-interferon (cat#315-05; 
PreproTech, Rocky Hill, NJ, USA), and were maintained at 
33°C and 5% CO2. For differentiation, podocytes were cul-
tured at 37°C in medium lacking γ-interferon for 7-14 days. 
Under these conditions, the cells stopped proliferating and 
were positive for synaptopodin.

For primary mouse podocyte cell culture, isolation of 
podocytes from day 3 in control and dynamin 1−/− dynamin 
2−/− Pod-Cre (pod-Dnm-DKO) mice were performed as de-
scribed previously.23 Briefly, mice glomeruli isolated using 
the Dynabeads (cat#DB14011, Thermo Fisher Scientific) 
perfusion was minced with a sterile razor, digested with 

collagenase A (5 mg/mL, cat#10103586001, Merck KGaA) 
containing DNase (0.2  mg/mL, Merck KGaA) for 30  min-
utes at 37°C under 5% CO2 in cell culture incubator. The 
digested glomeruli were filtered through a 70-μm cell 
strainer (cat#352350, Corning Corp.), plated on type I col-
lagen-coated dishes in RPMI 1640 medium (cat#11875-
093, Thermo Fisher Scientific) supplemented with 10% 
FBS, 100  U/mL penicillin/streptomycin, 10  mM HEPES, 
1  mM sodium bicarbonate, and 1  mM sodium pyruvate, 
pH7.4. Subculture of primary podocytes was performed by 
detaching the glomerular cells with 0.05% trypsin/EDTA 
(cat#25300054, Thermo Fisher Scientific) at 80%-90% con-
fluency, followed by sieving through a 40-μm cell strainer 
(cat#352340, Corning Corp.). Primary podocyte enrichment 
was confirmed by anti-WT1 staining (a specific marker for 
podocyte), and passage 1 was used in all the experiments.

2.3 | Purification of recombinant proteins

His-tagged dynamin 1 was expressed using the Bac-to-Bac 
baculovirus expression system (Thermo Fisher Scientific) 
and purified as described previously.16 The purified dy-
namin solutions were concentrated using Centriplus YM50 
(cat#4310; Merck-Millipore, Darmstadt, Germany). His-
tagged rat dynamin 2 was expressed using a wheat germ 
cell-free expression system (CellFree Sciences, Matsuyama, 
Japan). Dynamin 2 was resolved in 100 mM NaCl, 50 mM 
Tris, 500 mM imidazole, pH8.0, and stored at 4°C until use.

2.4 | SiRNA-mediated interference and 
transfection

The pre-annealed siRNA mixture for mouse dynamin 
1 (cat#L043277010010) and the negative control 
(cat#D0018101005) siRNA were synthesized and purified by 
Dharmacon Inc (Lafayette, CO, USA). Four siRNAs target-
ing independent sequences of mouse dynamin 1 were mixed: 
oligo 1 sense, 5′-GCGUGUACCCUGAGCGUGU-3′; 
oligo 2 sense, 5′-UGGUAUUGCUCCUGCGACA-3′; 
oligo 3 sense, 5′-GGGAGGAGAUGGAGCGAAU-3′; 
oligo 4 sense, 5′-GCUGAGACCGAUCGAGUCA-3′. 
Scrambled RNA with no significant sequence homology to 
the mouse, rat or human dynamin 1 gene sequence was used 
as the negative control. Undifferentiated MPCs were trans-
fected with the siRNAs using Lipofectamine RNAiMax 
reagent (cat#13778-150, Thermo Fisher Scientific). The 
cells were seeded into type I collagen-coated 6-well plates 
(cat#356400, Corning Inc) at a density of 5  ×  104 cells/
well. One day later, each well was incubated for 6 hours 
with 60 pmol siRNA and 18 µL RNAiMax in Opti-MEM 
(cat#31985070, Thermo Fisher Scientific) containing 
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γ-interferon. Subsequently, the transfection medium 
was replaced with fresh medium containing γ-interferon. 
Following 72 hours, a second transfection was performed, 
and the cells were cultured for another 72  hours. It was 
confirmed that all the four siRNAs individually reduced 
the expression of dynamin 1 (Figure S1). To enable dif-
ferentiation, the cells were plated into new culture dishes 
and maintained in medium lacking γ-interferon at 37°C for 
7 days.

The expression vector harboring Flag-tagged human 
dynamin 1 (Gene ID1759) was generated using Gateway 
cloning technology (Thermo Fisher Scientific). The vec-
tor was then transfected into cells using Lipofectamine 
LTX reagent (Thermo Fisher Scientific) according to the 
manufacturer's protocol. After transfection for 2 days, the 
cells were cultured in differentiation medium for a further 
7 days.

2.5 | Immunohistochemistry

Under sevoflurane anesthesia, 7-week-old male Wister rats 
(Shimizu Laboratory Supplies Co., Kyoto, Japan) were 
perfusion-fixed with 4% paraformaldehyde and 20% su-
crose in phosphate-buffered saline (PBS; 150  mM NaCl, 
10  mM phosphate buffer, pH7.4). The kidney was then 
cut into slabs and fixed with the same fixative at 4°C for 
16 hours. The fixed kidney was cryoprotected with 18% of 
sucrose and frozen-sectioned at 3 µm thickness. Dissected 
kidney from 2-day-old rats under sevoflurane anesthesia 
was fixed in the same fixative, and was frozen-sectioned 
at 3 µm thickness. The sections were double stained as de-
scribed previously.29

2.6 | Immunoelectron microscopy

For immunoelectron microscopy of glomeruli, 7-week-
old male rats were anesthetized and fixed by perfusion of 
4% paraformaldehyde and 0.1% glutaraldehyde in 0.1  M 
phosphate buffer (pH7.4)(PB). The kidneys were dis-
sected and processed for embedding in LR White (London 
Resin Company Ltd., Berkshire, UK). Ultrathin sections 
(80  nm thickness) were stained with rabbit polyclonal 
anti-dynamin 1 antibodies (1:10) at 4°C for 16 hours, fol-
lowed by goat anti-rabbit IgG conjugated with 10 nm gold 
(1:50, cat#EMGAR10; BBI Solutions, Cardiff, UK) at 4°C 
for 16 hours. Pre-embedding immunoelectron microscopy 
of cultured podocyte was performed as described previ-
ously.16 Briefly, differentiated MPCs were fixed with 4% 
paraformaldehyde in 0.1 M PB, pH7.4 for 15 minutes, and 
then, washed once. Cells were permeabilized with 0.25% 
saponin in 0.1 M PB for 30 minutes. After incubation in 

blocking solution (1% bovine serum albumin and 10% goat 
serum in 0.1 M PB) for 15 minutes, samples were incubated 
with rabbit monoclonal anti-dynamin 1 antibody (ab52611, 
1:15) diluted in blocking solution at 4°C for 16  hours, 
washed with 1% bovine serum albumin in 0.1 M PB five 
times, incubated with 1.4  nm gold conjugated with sec-
ondary antibodies (1:50, cat#2002, Nanoprobes Inc, NY, 
USA), and then, fixed with 1% glutaraldehyde in 0.1  M 
PB for 10 minutes. The gold particles were developed with 
silver enhancement kit (cat#2012, Nanoprobes Inc). The 
samples were postfixed with 0.5% OsO4 in 0.1 M sodium 
cacodylate buffer for 90 minutes, dehydrated, and embed-
ded in Epon 812 (cat#341; Nissin EM Co., Ltd., Tokyo, 
Japan) for ultrathin sectioning. The sections were observed 
with a Hitachi H-7650 transmission electron microscope 
(Hitachi High-Tech Corp., Tokyo, Japan).

2.7 | Fluorescent microscopy

MPCs were fixed with 4% paraformaldehyde and stained by 
immunofluorescence as described previously.16 For Triton 
X-100 treatment, differentiated MPCs were incubated with 
1% Triton X-100 in Brinkley reassembly buffer (BRB80; 
80 mM PIPES, 4% polyethylene glycol 8000, 2 mM MgCl2, 
and 0.5  mM EGTA, pH7.0) for 5  minutes at 37°C.22 The 
cells were washed once with BRB80 without Triton X-100, 
and then, followed by immunofluorescence. For nocodazole 
treatment in differentiated MPCs, cells were incubated with 
10  µM nocodazole (cat#M1404, Sigma-Aldrich) at 37°C 
for 5 or 10  minutes, and then, fixed with 4% paraformal-
dehyde in PBS. Dynamin 1, Flag-dynamin 1 and α-tubulin 
were visualized by double-immunofluorescence. Samples 
were examined using a spinning disc confocal microscope 
system (X-Light Confocal Imager; CREST OPTICS SPA, 
Rome, Italy) combined with an inverted microscope (IX-
71; Olympus Optical Co., Ltd., Tokyo, Japan) and an iXon+ 
camera (Oxford Instruments, Oxfordshire, UK). The confocal 
system was controlled by MetaMorph software (Molecular 
Devices, Sunnyvale, CA, USA). When necessary, images 
were processed using Adobe Photoshop CS3 or Illustrator 
CS3 software. For super-resolution microscopy, N-SIM sys-
tem was used (NIKON Corp., Tokyo, Japan).

Primary cultured control and pod-Dnm-DKO podocytes 
on type I collagen-coated coverslips were washed with PBS, 
fixed with 4% paraformaldehyde for 15 minutes at room tem-
perature, permeabilized with 0.1% Triton X-100 in PBS for 
15  minutes, blocked with 3% BSA at RT for 1  hour, then, 
incubated with the appropriate primary antibodies at 4°C for 
overnight, followed by incubation with Alexa Fluor 488- and/
or Alexa Fluor 594-conjugated secondary antibodies. Images 
were taken by an Andor CSU-WDi spinning disc confocal 
microscope equipped with a Nikon Eclipse Ti-E CFI plan 
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apochromat lambda X60 oil immersion objective for immu-
nofluorescence analysis, and images were processed using 
the NIH image J software (version 1.52t) or Adobe Photoshop 
CS6.

2.8 | Quantification of actin bundles by a 
low speed sedimentation assay

Non-muscle actin (cat#APHL99, Cytoskeleton Inc, 
Denver, CO, USA) was polymerized in F-buffer contain-
ing 10 mM Tris-HCl, 0.5 mM DTT, 0.2 mM CaCl2, 2 mM 
MgCl2, 50 mM KCl, and 0.5 mM ATP, pH7.5, for 1 hour. 
Dynamin 1 at 1 µM was then incubated with 2 µM F-actin 
in 50  mM KCl or 150  mM KCl containing F-buffer for 
1 hour. Actin bundles were sedimented by low-speed cen-
trifugation, at 14 000 g for 1 hour. The pellet and superna-
tant were separated by SDS-PAGE, stained with SYPRO 
Orange (cat#S6650, Thermo Fisher Scientific), and quanti-
tated by densitometry using Image J. All steps were carried 
out at room temperature.

2.9 | Tubulin disassembly assay

Tubulin disassembly was quantitatively analyzed using a tu-
bulin polymerization assay kit (cat#BK011P; Cytoskeleton 
Inc). A 36.3  µM solution of porcine-brain derived tubulin 
was prepared in PIPES buffer (80 mM PIPES, 2 mM MgCl2, 
0.5 mM EGTA, 1 mM GTP, 15% glycerol, pH6.9) contain-
ing 5.5 µM DAPI. The solution was incubated at 37°C for 
1 hour to polymerize tubulin. Subsequently, dynamin 1 was 
added to the preformed microtubules at the indicated con-
centrations, and the solution was incubated at 37°C for a fur-
ther 30 minutes. The fluorescence intensity originating from 
microtubules (emission: 450  nm; excitation: 350  nm) was 
monitored with a fluorescent microplate reader (MTP-600F; 
Corona Electric Co. Ltd., Ibaraki, Japan). The disassembly 
of tubulin was initiated by adding 2  mM CaCl2 or 10  µM 
podophyllotoxin.

2.10 | Preparation for whole kidney or 
glomeruli homogenate

Whole kidney of male 6-week-old mice (C57BL/6J) or 
7-week-old rat (Shimizu Laboratory Supplies Co., Kyoto, 
Japan) were separated. Mouse or rat glomeruli were iso-
lated as previously described.30 The samples were ho-
mogenized in PBS containing a protease inhibitor cocktail 
tablet (cat#11697498001, Roche Diagnostics, Basel, 
Switzerland) with a Potter-type glass-Teflon homog-
enizer. The homogenate was centrifuged at 20  000  g for 

30 minutes at 4°C. The supernatant was sampled in SDS 
sample buffer. Samples were boiled for 5 minutes and sub-
jected to Western blotting.

2.11 | Electron microscopy

For negative staining, a 8.3  µM solution of porcine-brain 
derived tubulin (cat#BK029, Cytoskeleton Inc) in PIPES 
buffer was polymerized according to the manufacture's pro-
tocol. The paclitaxel stabilized microtubules were incubated 
with 1 µM dynamin 1 at 37°C for 1 hour. Tubulin bundles 
were formed in vitro as described above. The samples were 
absorbed to a Formvar- and carbon-coated copper grid and 
then stained with 3% uranyl acetate in ddH2O for 2 minutes. 
Electron microscopy was carried out using a Hitachi H-7650 
transmission electron microscope.

2.12 | Morphometry

To assess the colocalization of dynamin 1 with acetylated 
tubulin, dynamin 2, AP-2, or clathrin, immunostained cells 
were imaged, and the immunoreactivities within randomly 
selected areas were measured. Images of control and treated 
cells stained with an antibody against α-tubulin were ac-
quired at identical settings with a 40× objective for cells 
overexpressing dynamin 1 and a 60× objective for dynamin 
1-depleted cells. Total pixel intensities per cell were then 
measured using MetaMorph software. For the quantification 
of fluorescence, background correction was performed for 
each image before the measurement.

Outlines of differentiated MPCs or primary cultured 
mouse podocytes were recognized by cortical actin staining 
and/or by phase-contrast microscopy observation. Protrusions 
were defined as processes 4 μm or larger in width, and 10 μm 
or larger in length. Protrusions were counted on randomly 
selected fluorescent images of control and dynamin 1 knock 
downed MPCs (40 cells), or wild-type (21 cells), and dy-
namin 1 and 2 double knockout (29 cells) primary mouse 
podocytes stained for α-tubulin using Image J.

The fraction of microtubule (MT) bundles to total MTs 
was determined according to Bai et al.31 Briefly, we first ac-
quired the sum of fluorescent intensity for α-tubulin in total 
cell area from immunofluorescent images using MetaMorph 
software. Next, the mean fluorescence intensity per pixel for 
the five-separate single MTs observed in the periphery of 
each cell was determined. Subsequently, the average value 
of fluorescence intensity for single MTs per pixel was sub-
tracted from total mean of MTs fluorescence intensity. The 
resultant sum fluorescent intensity of these putative MT bun-
dles was calculated as a fraction of the total MT fluorescence 
intensity in using MetaMorph software.
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F I G U R E  1  Dynamin 1 is expressed in podocytes. A, Western blotting analyses of dynamin 1 (Dyn1) and dynamin 2 (Dyn2) in rat and mouse 
kidney homogenates (60 µg per lane). B, Western blot analyses of dynamin 1 (Dyn1), dynamin 2 (Dyn2), WT1 and β-actin in rat and mouse 
glomeruli homogenates (30 µg for dynamin 1 and dynamin 2, 15 µg for WT1, 5 µg for β-actin per lane). C, The distribution of dynamin 1 in the 
renal glomerulus. Sections were co-stained for dynamin 1 (top left) and synaptopodin (top right). Bar: 100 µm. D, Immunogold labeling of dynamin 
1 in a rat kidney slice. Arrowheads indicate immunogolds for dynamin 1. Bar: 300 nm. PP, primary process; FP, foot process; GBM, glomerular 
basement membrane
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2.13 | Ethics and animal use statement

All experiments and protocols were approved by the institu-
tional animal care and use committee of Okayama University 
(OKU-2019688, Japan). All efforts were made to minimize 
animal suffering. After euthanizing mice, whole kidneys 
were removed.

2.14 | Statistical analysis

Data were analyzed for statistical significance using 
KaleidaGraph software for Macintosh, version 4.1 (Synergy 
Software Inc, Essex Junction, VT, USA). Student's t tests were 
used to analyze two groups. P < .05 was considered significant.

3 |  RESULTS

3.1 | Dynamin 1 is present in glomerular 
podocytes

Western blotting analyses detected expression of dynamin 1, the 
neuronal isoform, and dynamin 2, which is ubiquitously expressed, 
in homogenates prepared from rat or mouse kidney (Figure 1A) 
and glomeruli (Figure 1B). Subsequently, the localization of dy-
namin 1 in rat kidney was determined by immunohistochemistry. 
As shown in Figure 1C, dynamin 1 immunoreactivity was clearly 
observed in glomeruli, at the periphery of glomerular capillaries. 
Dynamin 1 was also present on the proximal tubules (Figure S2A). 
Furthermore, dynamin 1 was colocalized with synaptopodin, a po-
docyte marker, indicating its presence in glomerular podocytes 
(Figure 1C). Next, we investigated the expression of dynamin 1 
and dynamin 2 during glomerulogenesis by immunofluorescence 
of 2-day-old rat kidney. Both dynamin 1 and dynamin 2 were pre-
sent in synaptopodin-positive developing glomeruli. The dynamin 
expressions were weaker at earlier stages, in which synaptopo-
din is expressed less. While dynamin 2 was expressed in all the 
cells in the kidney section, dynamin 1 inclined to be expressed in 
glomeruli (Figure S2B,C). Ultrastructural examination by immu-
noelectron microscopy of rat kidney revealed that podocyte asso-
ciated dynamin 1 was mainly localized at the primary processes 
and the perikarya but not the foot processes (Figure 1D and Figure 
S3). Immunogold particles were often found in proximity to the 
filament-like structure such as microtubules, which enriched in 
primary process (Figure 1D).

3.2 | Dynamin 1 accumulates at 
microtubules in differentiated MPCs

Given the presence of dynamin 1 protein in rat and mouse po-
docytes, we next examined its expression in a mouse podocyte 
cell line. MPCs can be differentiated by shifting the culture 

temperature from 33 to 37°C, along with removing γ-interferon 
from the culture medium.28 Differentiated MPCs appeared 
spread-out and extremely large, and the microtubules, which 
often appeared as loose bundles, extended radially to the cell 
periphery. Dynamin 1 was present in a punctate pattern on 
plasma membrane, in cytosol and in nuclei, and partially colo-
calized with α-tubulin under the confocal fluorescence micro-
scope (Figure 2A). By super-resolution microscopy, dynamin 1 
was visible as dots that were present on both single microtubule 
and microtubule bundles (Figure 2C). By immunoelectron mi-
croscopy, bundles of microtubules radially extending to the cell 
periphery were evident, and immunogold particles for dynamin 
1 were often present on the microtubules (Figure 2D). To fur-
ther confirm the presence of dynamin 1 on microtubules, we 
treated cells with Triton X-100 to remove plasma membrane and 
cytosolic proteins, and the cells were analyzed by immunofluo-
rescence. Under the conditions, dynamin 1 clearly colocalized 
with microtubules (Figure 2A). The same results were obtained 
using different anti-dynamin 1 antibody (PA1-660) (Figure 2B). 
On the contrary, dynamin 2 hardly localized with microtubules 
(Figure S4). These results suggest that dynamin 1 associates with 
microtubules.

Next, we examined the effect of dynamin 1 on the intra-
cellular tubulin expression. Western blotting analyses detected 
dynamin 1 protein in both undifferentiated and differentiated 
MPCs (Figure  3A). The expression levels of the cytoskeletal 
proteins β-actin and α-tubulin were similar in undifferentiated 
and differentiated MPCs (Figure 3A,B), despite the marked dif-
ference in size of the cells (Figure 3D). However, the level of 
acetylated tubulin in differentiated MPCs was approximately 
ninefold higher than that in undifferentiated cells (Figure 3A,C). 
Immunofluorescent staining revealed that the radial microtu-
bules were mostly acetylated in differentiated but not undifferen-
tiated MPCs (Figure 3D). Furthermore, dynamin 1 was present 
as fine puncta and partially colocalized with acetylated tubulin 
in differentiated MPCs (Figure 3D,E). By contrast, the dynamin 
1-positive puncta hardly colocalized with dynamin 2, the clath-
rin-coated pit marker proteins, AP-2 clathrin heavy chain and 
actin (Figure S5). We performed low-speed actin cosedimen-
tation assay using dynamin 1 and actin, because dynamin 1 
bundles actin filaments, suggesting its role in actin regulation.32 
Dynamin 1 was unable to bundle actin filaments in a physiolog-
ical ionic strength buffer (Figure S6). These results suggest that 
dynamin 1 plays a role that is distinct from that of dynamin 2 in 
endocytosis and actin cytoskeletal regulation.

3.3 | Dynamin 1 depletion in 
podocytes causes mislocalization of 
acetylated tubulin and the decrease of 
protrusion formation

Although dynamin 1 has been identified as a microtubule-
binding protein,19,20 the physiological significance of this 
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interaction is still unknown. Since dynamin 1 was accumu-
lated on α-tubulin and acetylated tubulin in differentiated 
MPCs (Figures 2 and 3), we examined the effect of RNAi-
mediated depletion of dynamin 1 on microtubules. Western 
blotting analyses revealed that expression of dynamin 1 was 
selectively knocked down without disturbing the expression 
of dynamin 2 or β-actin. Depletion of dynamin 1 did not affect 
the expression of α-tubulin or acetylated tubulin (Figure 4A). 
Furthermore, cell size and expression levels of synaptopodin, 
a marker of podocyte differentiation, were also unaffected by 
dynamin 1 depletion (Figure S7).

Next, we determined whether dynamin 1 depletion af-
fects the distribution of α-tubulin and acetylated tubulin. In 
control cells, microtubules were loosely bundled and several 
bundles running radially from the perinuclear region to the 
cell periphery were evident. The microtubules in dynamin 

1-depleted cells were dispersed, and the bundle formation 
was less prominent, although they were oriented radially as 
in control cells (Figure 4B). The percentage of microtubule 
bundles per cell was 54.9 ± 1.9 (n = 21 cells) in the control 
group and 39.9 ± 1.9 (n = 20 cells) in the dynamin 1-de-
pleted group (Figure 4C). Acetylated tubulin in control cells 
was present along the radiated microtubules. On the con-
trary, in the dynamin 1-depleted cells, acetylated tubulin was 
discontinuous, and therefore, appeared as short fragmented 
filaments (Figure 4D), suggesting that dynamin 1 might reg-
ulate the acetylation state of microtubules. MPCs formed a 
lot of protrusions enriched with microtubules, and cortical 
actin was visible at the protrusions. Furthermore, the micro-
tubule-rich protrusions in MPCs were irregularly shaped, 
not like thin actin bundle-rich filopodia (Figures 4 and S8). 
Dynamin 1-depleted MPCs rarely formed protrusions as 

F I G U R E  2  Dynamin 1 colocalizes with microtubules in differentiated mouse podocyte cell line (MPCs). A, Double immunofluorescent 
images of dynamin 1 and α-tubulin using anti-dynamin 1 antibody (ab52611) in differentiated MPCs. Cytosolic and membrane proteins 
were removed by 1% Triton X-100 (TX100) treatment (bottom panels). Untreated cells were shown (top panels). Bar: 20 µm. B, Double 
immunofluorescent images of dynamin 1 and α-tubulin using anti-dynamin 1 antibody (PA1-660) in differentiated MPCs. Cells were treated 
with (bottom panels) or without (top panels) TX100 as in A. Bar: 20 µm. C, Super-resolution microscopy images of dynamin 1 and α-tubulin in 
differentiated MPCs. Bar: 5 µm. D, Immunogold labeling of dynamin 1 (PA1-660) in differentiated MPCs. The boxed areas in the top panel are 
enlarged (bottom panel). Bar: 1 µm in upper panel, 200 nm in bottom panel
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compared to that of control (Figure 4E,F). In addition, podo-
cyte-specific double-knockout of murine dynamins 1 and 
2 caused severe proteinuria and renal failure.23 Therefore, 
we next examined whether distribution of microtubules and 
acetylation state of α-tubulin are altered in primary cul-
tured dynamin double-knockout podocytes. As shown in 
Figure 4G, the control podocyte had several protrusions con-
taining bundles of microtubules. Mirroring MPC, the micro-
tubules in the bundles were enriched with acetylated tubulin. 
In dynamin double-knocked out podocytes, the number of 
protrusion was decreased by approximately 50% as com-
pared to that in control cells (Figure 4H). Overall, these re-
sults suggest that dynamin 1 is critical for the regulation of 
microtubule distributions which is required for protrusion 
formation.

3.4 | Dynamin 1 forms stable microtubule 
bundles in vitro

To investigate the direct effect of dynamin 1 on microtu-
bules, Taxol-stabilized microtubules were incubated in vitro 
with or without recombinant dynamin 1 at 37°C for 30 min-
utes, and then, observed by negative staining electron mi-
croscopy. In the absence of dynamin 1, the microtubules 
were dispersed and had a uniform diameter (27.3 ± 0.39 nm, 
n = 110). However, after incubation with recombinant dy-
namin 1, the microtubules were often tightly bundled, and 
dynamin 1-decorated microtubules showed a uniform thin di-
ameter (17.2 ± 0.35 nm, n = 90). Dynamin 1 was periodically 
arranged on the surface of microtubules, suggesting a helical 
polymerization around these structures (Figure  5A). These 

F I G U R E  3  Increased levels of acetylated tubulin and dynamin 1 colocalization are observed in differentiated MPCs. A, Western blot analyses 
of dynamin 1 (Dyn1), dynamin 2 (Dyn2), β-actin, α-tubulin (α-Tu) and acetylated tubulin (Ac-Tu) in lysates of undifferentiated and differentiated 
MPCs (60 µg for dynamin 1 and dynamin 2, 5 µg for β-actin, 10 µg for α-Tu, and Ac-Tu). B, C, The levels of α-tubulin (B, α-Tu) and acetylated 
tubulin (C, Ac-Tu) in lysates of undifferentiated and differentiated MPCs, as quantified by densitometric analysis. Data are represented as the 
mean ± SEM (n = 3). *****P < .0001. D, Immunofluorescence analyses of dynamin 1 and acetylated tubulin in undifferentiated (top) and 
differentiated (bottom) MPCs. The boxed areas in the overlay images are enlarged. Bar: 20 µm. E, Quantification of the colocalization of dynamin 
1 and acetylated tubulin in differentiated and undifferentiated MPCs. Data are represented as the mean ± SEM of more than 30 cells in three 
independent experiments. For each sample, colocalization was determined in three randomly selected areas per cell (21 µm2). *****P < .0001
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findings suggest that dynamin 1 may regulate microtubule 
stability via a direct interaction.

Next, we examined the effect of dynamin 1 on tubu-
lin disassembly induced by Ca2+ 33 or podophyllotoxin34 

in vitro. Tubulin disassembly was monitored by the reduc-
tion in fluorescence intensity of diamidino-phenylindole.35 
After incubation of preformed microtubules with dynamin 1, 
Ca2+ (1 mM) or podophyllotoxin (29 µM) was added to the 
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solution. In the absence of dynamin 1, tubulin was rapidly 
disassembled after the addition of Ca2+ or podophyllotoxin, 
and dynamin 1 dose-dependently inhibited the rate of tubulin 
disassembly (Figure 5B,C). Unlike in the case of dynamin 1, 
dynamin 2 bound to microtubules irregularly, and it bundled 
microtubules loosely. Furthermore, dynamin 2 did not change 
the tubulin depolymerization rate in vitro (Figure S9). These 
results suggest that dynamin 1 is more potent on microtubule 
stabilization than dynamin 2.

Finally, to determine the effect of dynamin 1 on stability 
of microtubules in cells, dynamin 1-overexpressing or dy-
namin 1-depleted MPCs were treated with nocodazole, a mi-
crotubule depolymerizing reagent. Nocodazole-treated cells 
overexpressing dynamin 1 displayed more bundled microtu-
bules (26.0  ±  3.3%, n  =  31 cells) than nocodazole-treated 
untransfected cells (13.4 ± 3.7%, n = 28 cells) (Figure 6A). 
In addition, nocodazole treatment of the untransfected cells 
partially abolished some of the microtubule arrays. The 
exogenous dynamin 1 was partially present on the noco-
dazole-resistant microtubules (Figure 6B). On the contrary, 
nocodazole-treated dynamin 1-depleted MPCs displayed a 
smaller number of microtubule bundles (12.6 ± 1.5%, n = 48 
cells) than nocodazole-treated control MPCs (20.5 ± 1.6%, 
n = 45 cells) (Figure 6C). Overall, these results indicate that 
dynamin 1 stabilizes microtubules in vitro and in vivo.

4 |  DISCUSSION

Podocytes express two isoforms of dynamin: dynamin 1 and dy-
namin 2.23,27 Dynamin 2 in podocytes has been studied mainly 
in relation to endocytosis and actin regulation3,23,25,26; how-
ever, the physiological role of dynamin 1 in these cells remains 
elusive. In the current study, we investigated the intracellular 
localization and possible roles of dynamin 1 in conditionally 
immortalized mouse podocytes. We confirmed the expression 
of dynamin 1 in MPCs as well as renal glomerular podocytes 
(Figures 1 and 2). In differentiated MPCs, dynamin 1 showed 

minimal colocalization with dynamin 2, marker proteins for 
clathrin-mediated endocytosis, clathrin heavy chain and AP-2, 
and actin (Figure S5). These results suggested cellular func-
tions that are distinct from those of dynamin 2. Differentiated 
MPCs formed large spread-out protrusions and contained 
microtubules that often appeared as loose bundles extending 
radially to the cell periphery (Figure 2). Differentiated MPCs 
displayed increased levels of tubulin acetylation and dynamin 
1 accumulation at α-tubulin (Figures 2 and 3).

RNAi-mediated depletion of dynamin 1 resulted in the 
formation of discontinuous, short α-tubulin fragments, and 
defective formation of protrusions. Consistently, dynamins 1 
and 2 double-knockout podocytes showed similar microtu-
bule localization and defective formation of acetylated tubu-
lin-rich protrusions (Figure 4), suggesting a role of dynamin 
1 in tubulin dynamics. Dynamin 1 bound directly to microtu-
bules and bundled tightly (Figure 5). Furthermore, microtu-
bule bundles containing dynamin 1 were resistant to tubulin 
disassembly by Ca2+ or podophyllotoxin (Figure 5). In addi-
tion, the presence of dynamin 1 enhanced the resistance of 
differentiated MPCs to the microtubule destabilizing agent 
nocodazole (Figure 6). Taken together, these results suggest 
a direct interaction between dynamin 1 and microtubules, 
which might be crucial for the regulation of tubulin acetyla-
tion and microtubule dynamics in vivo.

Although dynamin 1 has been identified as a microtu-
bule-binding protein in the brain,19,20 and its role in endocy-
tosis has been well studied,8 the physiological significance 
of its microtubule-binding activity has remained unclear. 
In the current study, we found that dynamin 1 is important 
for microtubule bundling and stabilization in differentiated 
podocytes. Similarly, dynamin 2 has been implicated in the 
dynamic instability of microtubules and microtubule-depen-
dent membrane trafficking in COS cells.21,22 In both cases, 
the detailed molecular mechanisms regulating microtubules, 
including acetylation of tubulin, require further clarification.

Dynamin is also implicated in actin regulation directly or 
indirectly.9 Recently, direct actin bundling by dynamin 1 from 

F I G U R E  4  Depletion of dynamin 1 causes loss of microtubule bundles and mislocalization of acetylated tubulin. A, Western blotting analyses 
demonstrates the suppression of dynamin 1 by RNAi in lysates of differentiated MPCs (60 µg for dynamin 1 (Dyn1) and dynamin 2 (Dyn2), 5 µg 
for β-actin, 15 µg for α-tubulin (α-Tu), and 20 µg for acetylated tubulin (Ac-Tu)). B, Immunofluorescence analyses demonstrates a decrease in the 
amount of loosely bundled microtubules in dynamin 1-depleted MPCs. Dynamin 1 and α-tubulin were visualized by double-immunofluorescence. 
Bar: 20 µm. C, The percentage of thick microtubule bundles per cell were determined in 20-21 cells per group (control and dynamin 1-knockdown). 
Data are represented as the mean ± SEM of three independent experiments. *****P < .0001. D, Aberrant distribution of acetylated tubulin in 
dynamin 1-depleted differentiated MPCs. Dynamin 1 and acetylated tubulin were visualized by double-immunofluorescence. The boxed areas in 
the overlay images are enlarged. Bar: 20 µm. E, Immunofluorescence analyses demonstrates a decrease in formation of protrusions in dynamin 
1-depleted differentiated MPCs. Alpha-tubulin (middle panels) were visualized by double-immunofluorescence. Arrowheads show protrusions. 
White line shows outline of the cell. Bar: 20 µm. F, The number of protrusions per cell was determined from control or dynamin 1-depleted 
differentiated MPCs. Data are represented as the mean ± SEM. ***P < .001. G, Immunofluorescence analyses demonstrates a decrease in 
formation of protrusions in dynamin 1 and 2 knockout mouse podocyte. Alpha tubulin (top) and acetylated tubulin (bottom) were visualized by 
double-immunofluorescence. Podocyte marker WT1 (red) were also shown. Bar: 20 µm. H, The number of protrusions per cell was determined 
from control or dynamins 1 and 2 double knockout podocyte. Data are represented as the mean ± SEM.
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in vitro assay was reported.32 We confirmed that the dynamin 
1 bundles F-actin like as dynamin 2 in low ionic strength buf-
fer, which conditions is widely accepted in the actin fields 

(Figure S6). In the study, dynamin 1 hardly colocalized with 
actin in the cell (Figure S5), and was unable to bundle actin 
filaments in physiological ionic strength buffer (Figure S6). 

F I G U R E  5  Dynamin 1 forms tight and thick microtubules, and decreases the rate of tubulin disassembly. A, Electron micrographs of 
negatively stained microtubules in the presence (top, middle) or absence (bottom) of dynamin 1. Bar: 10 µm (top), 200 nm (middle, bottom). B, 
C, The kinetics of tubulin disassembly induced by the addition of 1 mM CaCl2 (B) or 29 µM podophyllotoxin (C) in the presence or absence of 
dynamin 1 at the indicated concentrations. The rate of tubulin disassembly was measured by the change in fluorescence intensity at 450 nm.
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F I G U R E  6  Dynamin 1 stabilizes microtubules in differentiated MPCs. A, The sensitivity of dynamin 1-overexpressing differentiated MPCs 
to nocodazole. After the treatment of nocodazole, microtubules were more evident in MPCs overexpressing dynamin 1 (closed arrowheads) than 
in untransfected MPCs (open arrowheads). Bar: 20 µm. B, Colocalization of over-expressed dynamin 1 on nocodazole-resistant microtubules 
in differentiated MPCs. Co-immunofluorescence staining as used to visualize α-tubulin and Flag-dynamin 1. Bar: 20 µm. C, The sensitivity of 
dynamin 1-depleted MPCs to nocodazole. Dynamin 1-depleted MPCs were treated with 10 µM nocodazole for 5 minutes. The cells were then 
fixed, and α-tubulin was visualized as described in (A). Bar: 20 µm
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Thus, there might be some differences between dynamin 1 
and dynamin 2 on actin regulation in the cell. Dynamin 2 did 
not accumulate on microtubules (Figure S4), suggesting that 
dynamin 1 functions more potently than dynamin 2 in the 
regulation of microtubules in podocytes.

In protrusions, cortical actin was stained. Dynamin 2 may 
act on cortical actin regulation required for protrusion for-
mation. The role of dynamin 2 including actin, tubulin and 
membrane trafficking for protrusion formation needs to be 
studied in more detail.

In immature rat kidney, dynamin 1 preferentially present 
in glomeruli with synaptopodin. While dynamin 2 was ex-
pressed more evenly throughout kidney. These results suggest 
the important roles of dynamin 1 on glomerular development 
(Figure S2B,C). Considering these results, dynamin 1 is 
likely involved in podocyte morphogenesis including form-
ing primary processes.

Differentiated podocytes have complex architecture with 
major primary and secondary processes, and a multitude 
of foot processes that interdigitate with those of neighbor-
ing podocytes to form and maintain the glomerular slit di-
aphragms.1 Microtubules serve as the main cytoskeleton 
arrangement in major primary processes and the cell body 
of podocytes.36,37 Differentiated podocytes form a number 
of microtubule bundles that radiate from the perinuclear re-
gion to the cell periphery.36 Several tubulin-binding proteins, 
such as MAP family proteins, form cross-bridges between 
microtubules in vitro and in vivo.38,39 Dynamin 1 can bun-
dle microtubules by forming similar cross-bridges19 or via 
dynamin-dynamin interaction in vitro.40 Tightly bundled mi-
crotubules often contain acetylated tubulin, which is charac-
teristically found in stable microtubules.38,39 In our current 
study, we found that dynamin 1 accumulated at acetylated 
tubulin, suggesting a role in the stabilization of microtubules. 
Therefore, it is possible that dynamin 1 is involved in the 
formation of major process and supports the morphological 
structure of podocytes by regulating microtubule dynamics. 
In addition, microtubule-dependent trafficking of proteins 
such as nephrin and podocin is crucial for maintaining the 
structure of secondary foot process.41 Dynamin 1 could 
also participate in this trafficking pathway. It was reported 
recently that the microtubule-binding protein Tau co-orga-
nizes microtubule and actin networks.42,43 Dynamin 1 also 
could regulate both actin and microtubule dynamics to ensure 
proper podocyte function. Dynamin 1 and dynamin 2 might 
act coordinately to maintain the podocyte cytoskeletal struc-
tures, which is essential for their filtration function.
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